
RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)					
SECOND YEAR [BATCH 2017-20] B.A./B.Sc. FOURTH SEMESTER (January – June) 2019 Mid-Semester Examination, March 2019					
Dat	e : 2	26/03/2019 CHEMISTRY (General)			
Tim	e ::	1 pm – 2 pm Paper : IV F	ull Marks : 25		
		Answer any five questions :	[5×5]		
1.		Draw the phase diagram (in T-P space) for (i) water and for (ii) CO_2 . In the diagram n which phase is stable in which region; show the melting, boiling and the sublimation line point out the triple point and the critical point.			
2.	a)	Show graphically how the boiling point of solvent in a solution varies with the molality of in (i) an ideal and (ii) a real solution.	f solute		
	b)	Apply phase rule to calculate the degrees of freedom of a sugar solution at the boiling point	nt. [3+2]		
3.	a)	State the 2 nd law of thermodynamics in terms of entropy. Also show that entropy change isolated system is always zero.	e of an		
	b)	Calculate the entropy of vaporisation accompanying the vaporisation of 1 mol of benzene	(B.P. =		
		80°C), if the latent heat of vaporisation is 407.6 J/g. [M of benzene is 78]	[3+2]		
4.	a)	Starting from $TdS > \partial q$, show that for an irreversible process, (dG) under constant T at less than zero.	nd P is		
	b)	1 mol of an ideal gas at 300K and P is compressed to a final pressure 10P under rev	er reversible		
		isothermal conditions. Calculate change of entropy for the gaseous system.	[3+2]		
5.	a)	Give the electronic configuration and stable oxidation state of Cu, Ag and Au.	[2]		
		What is fulminating gold?	[1]		
		CuSO ₄ and CdSO ₄ gives different product when treated separately with KCN.	[2]		
6.	a)	Describe hydrolysis of ester by AAC2 mechanism.	[2]		
	b)	Give an example of each for preparation of Ketone and Carboxylic acid using Grignard rea	-		
7.	a)	Predict the structure of the molecules A, B and C. OH CH_3MgBr $A+B$	[3]		

b) Predict the product for the reaction and explain with mechanism.

$$\frac{\text{CO}_2\text{H}}{\text{MeOH}}$$

8. Write short notes on

- i) Mutarotation
- ii) Killiani-Fischer synthesis.

[2]

[2.5×2]

9. a)	Predict the structure of the product for the following reactions	[2×2]
	(i) D- glucose + Ph—N—NH ₂ (exess) \longrightarrow	
	(ii) D- glucose \longrightarrow	
b)	Draw the structure of D-fructose (open chain) in Fischer projection.	[1]
	×	
b)	$\begin{array}{c} \text{Me} \\ \text{(ii)} \text{D-glucose} & \underbrace{\text{dil HNO}_3} \\ \text{Draw the structure of D-fructose (open chain) in Fischer projection.} \\ & \qquad \qquad$	[1